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Abstract: In a recent paper [1] we showed, among other things, how a fairly general control problem, or 

programming problem, with constraints can be reduced to a special type of Bolza problem in the calculus of 

variations. Necessary conditions for the Bolza problem were then translated into necessary conditions for optimal 

control. These conditions include the maximum principle of Pontryagin [2, 3] for this class of problems and some of 

the later results of Gamkrelidze [4]. Our results in [1] do not, however, apply to control problems with constraints 

on the state variables that do not explicitly involve the control variable. Such problems were treated by Gamkrelidze 

in [4], who modified the arguments in [2] to account for the additional constraints. In this memorandum we shall 

use the methods of [1] to study such problems, and we shall obtain the results of Gamkrelidze, with one exception, 

from relevant results in the calculus of variations. 
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1.   FORMULATION OF PROBLEM 

We assume that the reader is familiar with [1], and we shall use the notation of [1]. Let  be a function of class  on the 

region  of -space such that the relation  defines a manifold  which divides  into two regions. 

Let  be that subset of  defined by the relation 

 . (2.1) 

We shall consider the control problem as formulated in [1] with , and with the added restriction that the curves K 

resulting from controls u in  must lie in . That is, we consider the following problem. 

Problem I. Find an element  in the class of admissible controls  that minimizes the functional 

 . 

Here, the state of the system is determined by the system of differential equations 

 ; 

the controls and the state of the system satisfy the constraints 

 ; 
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and the right-hand end point  of the trajectory is a point of a p-dimensional manifold, . 

It will be clear from what follows and from [1] how one handles the case in which  is a closed region in  with 

piecewise smooth boundary, each piece of which is defined by a relation . 

The assumption that  is made in order to simplify a certain portion of the argument below. Now loss of generality 

will result, for the control problem of [1] is equivalent to a control problem in which  and the initial point lies on a 

line, as the following transformation shows. Let a new coordinate  be introduced by means of the following differential 

equation and end conditions: 

 free. 

Let the functional to be minimized be 

 . 

In Problem I we assumed, as we did in[1], that the left-hand end point  is fixed. If  is constrained to lie on 

a p-dimensional manifold  in -space, the analysis that follows requires the introduction of a 

transversality condition for the left-hand end point. We leave this to the reader. 

We cannot treat Problem I by simply adjoining the constraint (2.1) as an -st component to the constraint vector 

 and then proceeding to use the analysis of [1]. The reason is that since  is independent of u, the constraint 

vector  will not satisfy the constraint condition (2.2)-(ii) of [1] at any point of *, the manifold defined by 

. The constraint conditions for Problem I are the following, which are modifications of those in [1]: 

(i) If , then at each point of , where  denotes the interior of , at most m components of R can 

vanish. If , then at each point of  at most  components of R can vanish. 

(ii) At each point of  the matrix , where  ranges over those indices such that , and 

, has maximum rank. At each point of , if the m-dimensional row vector  is adjoined to this matrix 

(where i now ranges from 1 to m – 1), the resulting matrix has maximum rank. (2.2) 

2.   EQUIVALENT LAGRANGE PROBLEM 

Let  be a scalar, and let 

  (3.1) 

The function  is clearly  on the region of -space which is the Cartesian product of the -axis and 

. If we let 
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then Problem I is readily seen to be equivalent to the following problem of Lagrange in -dimensional 

-space. 

 Problem II. Find an arc  that minimizes 

  (3.2) 

in the class of arcs that are piecewise  and that satisfy the differential equations 

 , 

 , 

 , (3.3) 

and also the end conditions 

 , (3.4) 

 , (3.5) 

 . 

Note that the last equation in (3.3) and the end conditions imply that  along each arc. Hence, by (3.1),  

along each arc. 

Let us suppose that  is an optimal control in , and let  be the corresponding curve in -space. Let  be 

the corresponding arc in -space. Consider the following  by  matrix along 

: 

 . (3.6) 

where  is an  diagonal matrix with entries  on the diagonal. The rank of (3.6) is clearly the same as the 

rank of the matrix 

 . (3.7) 

Since along , it follows from (3.1) that  if , and that  if . Hence, using the constraint 

conditions (2.2) and arguments similar to those used to determine the rank of (3.8) in [1], we see that the matrix (3.7) has 

rank  at all points of . Hence (3.6) has rank . 
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The above argument is not restricted to ; it shows that (3.6) has rank  at all elements 

 of a curve for which (3.3) and the end condition (3.4) and (3.5) hold. 

If  and  define a p-dimensional terminal manifold for Problem I, then the right-hand end conditions for 

Problem II and the restriction that is in  determine ap-dimensional terminal manifold in -space for 

Problem II. We suppose that in a neighbourhood of the right-hand end points of , this manifold is given parametrically 

as follows: 

 . 

We note that 

 . (3.8) 

Since  is an optimal control, it is clear that  furnishes a minimum for Problem II. From this and from the preceding 

discussion it follows that the multiplier rule, the Weierstrass condition, and the Clebsch condition as given in Bliss [5] and 

extended by McShane [6] hold along . The function F in this instance is defined as follows: 

 . (3.9) 

 From the Euler equations 

 , , 

the continuity of  and , and the relations 

 , (3.10) 

which we obtain from the transversality condition, we deduce as we did in [1] that along , 

 , 

 . (3.11) 

 

From the Euler equation  we find that between corners of , 

 . (3.12) 

The Euler equation  takes the form 

 . (3.13) 

 If we make use of (3.10) in the remaining equations of the transversality condition, we get 
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From (3.3) we obtain that  and that at . Using these relations, Eq. (3.4), and the last equation 

in (3.3), we can rewrite the preceding equation as follows: 

 . 

Hence, using (3.8) we find that the transversality condition, in addition to yielding (3.10), gives 

 . (3.14) 

Another necessary condition is the continuity along  of the expression 

 . 

If we take (3.3) and (3.10) into account, this expression may be rewritten as follows along : 

 . (3.15) 

 Using arguments similar to those used above and in [1], we may rewrite the Weierstrass condition in the following 

form: 

 . (3.16) 

 From the Clebsch condition we deduce, as we did in [1], that along , 

 ,  (3.17) 

and that 

  (3.18) 

for all m-dimensional solution vectors e of the following linear systems:  at points that are interior to ; 

 and  at points of  that correspond to points of *. The vector is obtained from R by taking 

those components of R that vanish at the point. 

3.   AN INTERIOR SEGMENT 

We now consider the curve  corresponding to the optimal control . We adopt Gamkrelidze’s definition [4] and say 

that the point  of  is a junction point if it belongs to , if  and if there exists a  such 

that either the segment of  for which , or the segment for which  (or both), lies in the 

interior of . We call  a junction time. We suppose that  has a finite number of junction points. For definiteness, 

we suppose that if  is the largest junction time, then the portion of  defined for  is interior to . We 

denote this segment by  and also use this notation for the corresponding segment of . 

Since  is interior to , it follows that . Hence from (3.1) we have , and so from (3.12) we get that 

between corners of  is constant. Moreover, the end condition (3.14) places no restriction on . Since v is constant 
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Note that the differential equation (4.1) and the end conditions (3.14) are independent of the values assigned to v. Using 

this observation and the fact that the left-hand end point of  is fixed, we can see by examining the proof in [6] that we 

can always choose  at the right-hand end-point  of . From the constraint condition (2.2)-(ii) 

and from (3.11) it follows that l is determined uniquely as a linear function of  on the interval . Hence, 

on this interval, (4.1) can be written as a linear differential equation in , and so if  at any point of , then 

. Moreover, in this event . Since at , we can therefore conclude that 

 at every point of . 

 Define 

 . (4.2) 

For , let 

 , (4.3) 

and take v to be a constant on the entire interval . ( may have corners in this interval.) It follows from (4.1)-

(4.3), (3.11), (3.14)-(3.18), and from the relation , that Theorem 2 of [1] holds along . 

4.   A BOUNDARY SEGMENT 

Let  be the largest of the junction times that are less than . If there are none, take . We next suppose that the 

segment of  defined for  lies entirely in *. We denote this segment (and the corresponding segment of 

) by . To simplify the exposition we shall suppose that  has no corners and the same components of R vanish 

all along . If the contrary holds, the argument requires trivial modifications, which we leave to the reader. 
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for all admissible . Since the element  is admissible, it satisfies the last equation of (3.3), and 

so . Hence, setting , we can rewrite (3.16) as 

  (5.6) 

along  for all admissible u such that . 

Finally, equation (3.18) of the Clebsch condition becomes 

 . (5.7) 

From the necessary conditions for Problem II, it follows that there exists a constant  and functions  such 

that (5.4)-(5.7) hold along . From the constraint condition (2.2)-(ii), it follows that we may solve (5.5) uniquely for 

 as linear functions of . Substitution of this solution into (5.4) yields a system of linear differential equations 

for . Hence if  is determined at a point of , then the solution  of (5.4) and the functions  are 
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where  is any real constant, satisfies (5.4) and (5.5) along any curve K obtained from an admissible control and lying in 

*. Substitutions of (5.14) into the relation (5.6) reduces (5.6) o the identity  along any such curve. From 

(5.5) and the constraint condition (2.2)-(ii) it follows that (5.14) is the unique solution of (5.4)-(5.6) with 

,  arbitrary. It is immediate from (5.3) that for Problem II, 

 arbitrary, (5.15) 

is the unique vector corresponding to (5.14). The vector (5.15) reduces the Euler equations (3.13) and (3.11), and the 

Weierstrass condition (3.16) to identities for all admissible curves lying in *. We shall refer to (5.14) or (5.15) as a 

trivial multiplier vector. Note that since  is arbitrary, the zero vector is included. 

 If we have 

 , (5.16) 

at , for every set of multipliers  such that Eqs. (5.4)-(5.7) hold along , then it follows from 
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To avoid this, we proceed as follows. We consider a Problem , which we define as Problem I with fixed initial point 
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(5.10)-(5.13) are no longer valid. 
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Remark 1. This result was obtained by Gamkrelidze [4], who used different arguments. He also presents a result that in our 

notation reads along . 

Remark 2. In Section 6 we assumed that the segment  was interior to . If we had assumed that the segment  

was in *, then we would still conclude that, except for the jump conditions, Theorem 1 holds along .This follows 

from the arguments used to establish the theorem and the observation that the transversality condition (3.14) places no 

restriction on . 

5.   CONCLUSION 
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. The segment of  defined for  then lies entirely within . We denote his segment by . On 


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this segment we define  by means of (4.3), and apply the analysis of Section 6, except for the determination of 

initial data for (4.1). We now use the continuity of (5.8) at the junction point to determine and , where the 

subscript  refers to functions along . Since we have , it follows that at , the 

following jump condition holds: 

 arbitrary. 

Hence the conclusions of Theorem 2 of [1] hold along . 

Let us now suppose that , instead of lying on the boundary as assumed in Section 5, is an interior segment. The point 

, however, is still assumed to be a junction point. Along  we now define  by (4.3), and we apply 

the analysis of Section 6, except for the determination of the initial data for . To determine  

we use the continuity of (5.8) and get 

 . 

Since we are free in our choice of , we get 

 . (6.1) 

Hence Theorem 2 of [1] holds along . 

Note that in obtaining (6.1), we did not make use of the special fact that  is arbitrary because the segment  terminates 

at . Moreover, we can choose  so that . 

We summarize the principal results of this paper in the following theorem. 

Theorem 2. Let  be an optimal control, and let  be the corresponding curve. Then there exists a constant 

, an n-dimensional vector , an r-dimensional vector , and a function  such that the following 

hold: Along a segment of  whose end points are junction points and that is in the interior of , except for the end-

points, Theorem 2 of [1] holds. Along a segment whose end-points are junction points and that lies in *, Theorem 1 of 

this paper holds. If , then at a junction point either 

 , (6.2) 

or 

 . (6.3) 

If , then at a junction point (6.3) holds. At a junction point between two interior segments, we may take k so that 

(6.2) does not occur, and  in (6.3). If (6.3) holds, then the following also holds: 

 . (6.4) 

From this theorem, several observations can be made. Since these are given by Gamkrelidze [4], there is no need to repeat 

them here. 
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